- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
DUNDAS, BJØRN IAN (1)
-
Dugger, Daniel (1)
-
Dundas, Bjørn (1)
-
Dundas, Bjørn Ian (1)
-
Hill, Michael (1)
-
Isaksen, Daniel C (1)
-
LINDENSTRAUSS, AYELET (1)
-
Ormsby, Kyle (1)
-
RICHTER, BIRGIT (1)
-
Østvær, Paul (1)
-
Østvær, Paul Arne (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We perform Hochschild homology calculations in the algebro-geometric setting of motives over algebraically closed fields. The homotopy ring of motivic Hochschild homology contains torsion classes that arise from the mod-p motivic Steenrod algebra and generating functions defined on the natural numbers with finite non-empty support. Under Betti realization, we recover Bökstedt’s calculation of the topological Hochschild homology of finite prime fields.more » « less
-
Dugger, Daniel; Dundas, Bjørn Ian; Isaksen, Daniel C; Østvær, Paul Arne (, Algebraic & Geometric Topology)
-
DUNDAS, BJØRN IAN; LINDENSTRAUSS, AYELET; RICHTER, BIRGIT (, Mathematical Proceedings of the Cambridge Philosophical Society)
An official website of the United States government
